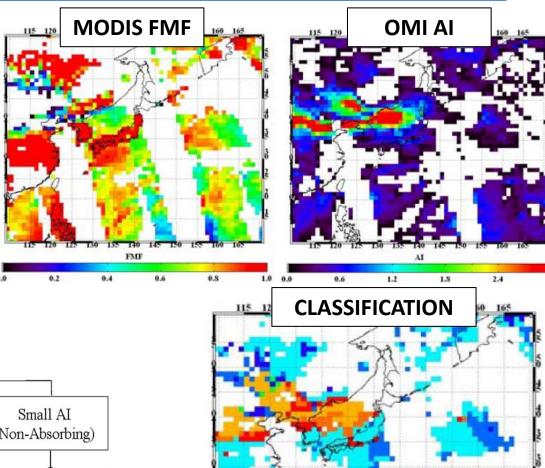
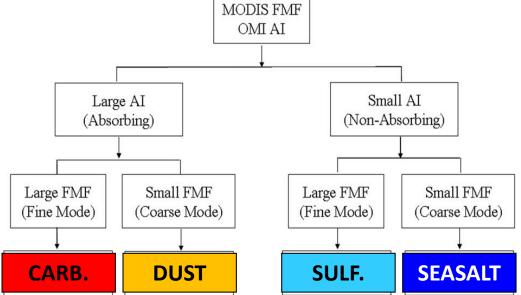
SATELLITE AEROSOL COMPOSITION RETRIEVAL USING NEURAL NETWORKS

- ⁽¹⁾ CETEMPS
- ⁽²⁾ Dept. Physical and Chemical Sciences University of L'Aquila
- ⁽³⁾ University of Tor Vergata
- ⁽⁴⁾ SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

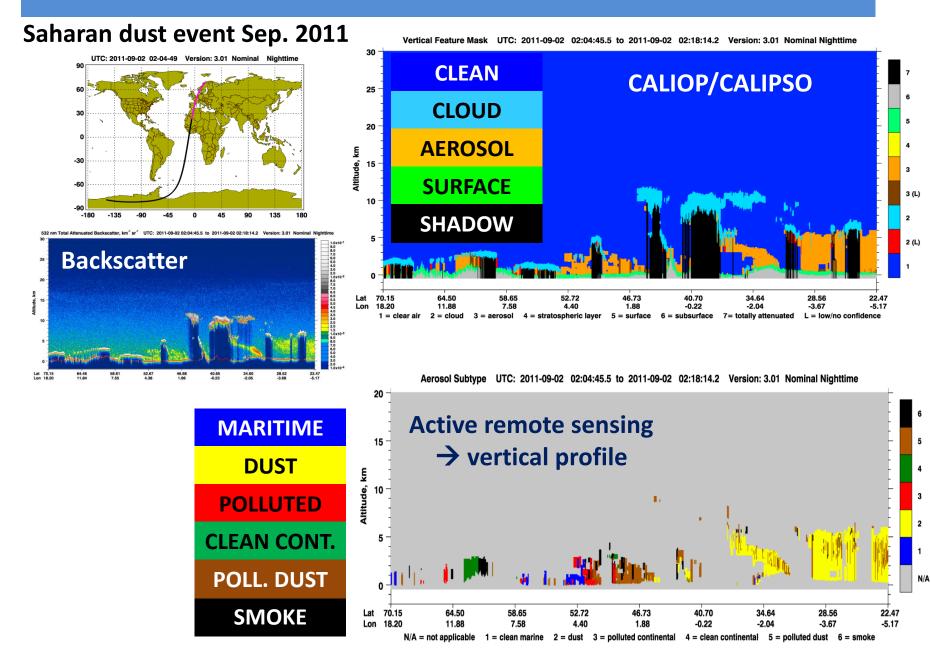
gabriele.curci@aquila.infn.it

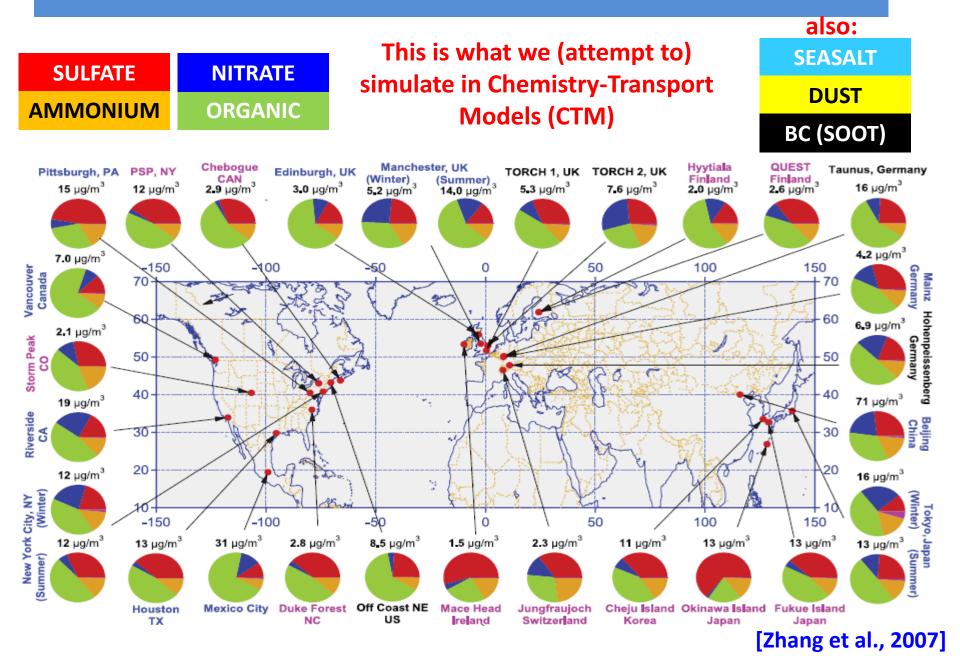

ROMA 1-3 Marzo 2017


Data Exploitation della missione PRISMA, precursore delle missioni iperspettrali nazionali

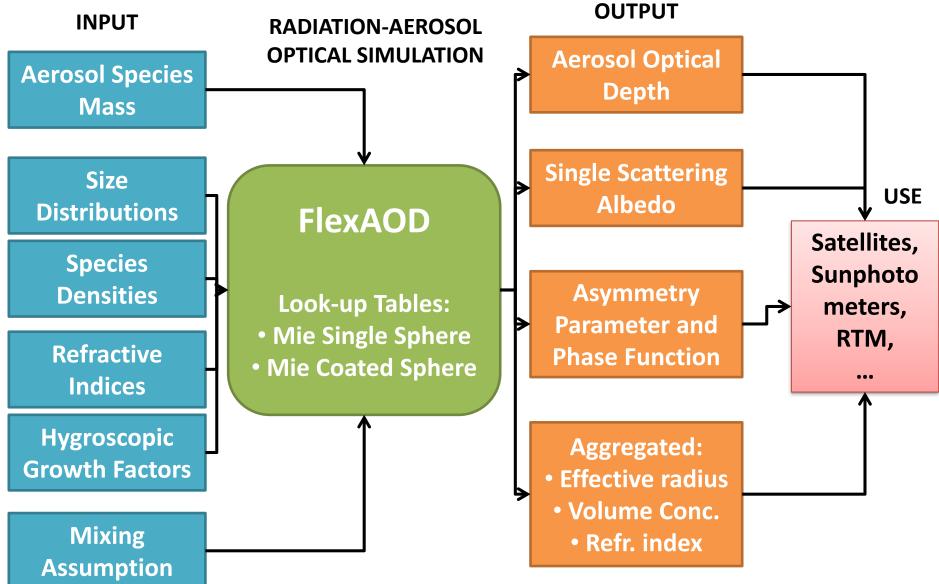
AEROSOL COMPOSITION REMOTE SENSING: MASK

Simple mask based on MODIS Fine Fraction and OMI AI products

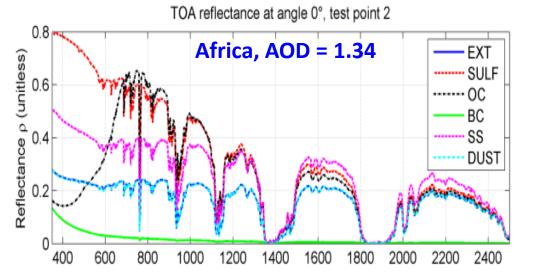

Absorption adds info

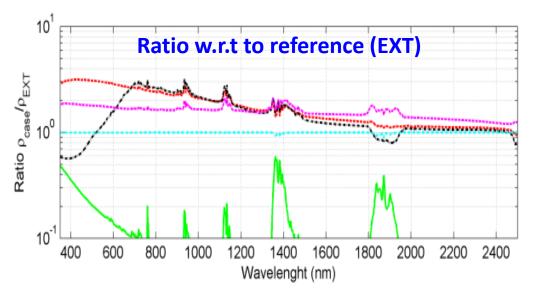


AEROSOL COMPOSITION REMOTE SENSING: LIDAR


AEROSOL CHEMICAL COMPOSITION IN MODELS

- Question:
 - Can we retrieve a «model-like» aerosol composition from satellites?
- Method:
 - We simulate one year (2006) of aerosol composition over the globe with the GEOS-Chem chemistrytransport model (www.geos-chem.org) at 2° x 2.5° horizontal resolution
 - We calculate optical properties associated to aerosol fields using the FlexAOD post-processor
 - We use the libRadtran radiative trasfer model (www.libradtran.org) to calculate Top of Atmosphere reflectaces arising from about 6000 aerosol scenes randomly selected over the ocean (dark surface)
 - We train Neural Networks to associate the TOA reflectances to the underlying aerosol chemical species column abundance

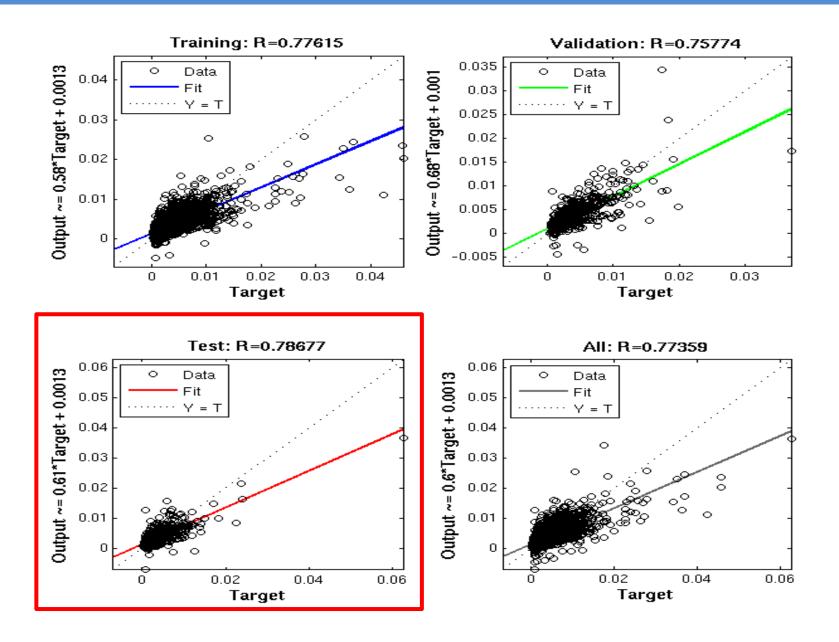

FlexAOD WORKING DIAGRAM

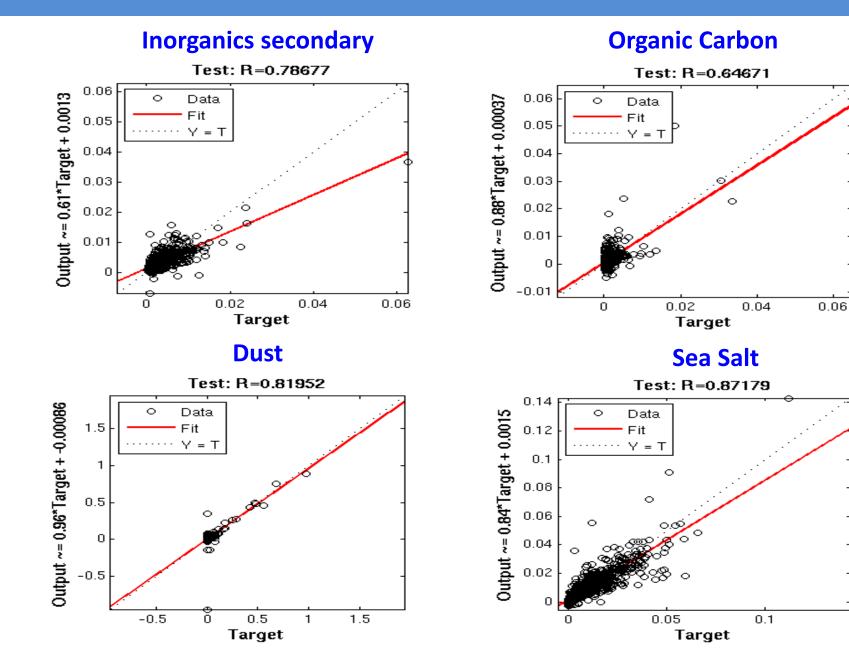


[Curci et al. Atm. Env. 2015]

	SIA	ОСРО	OCPI	BCPO	BCPI	SSA	SSC	DUST
Description	Inorganic secondary aerosol (sulfate like)	Hydrophobic Organic Carbon (primary)	Hydrophillic Organic Carbon (aged primary and secondary	Hydrophobic Black Carbon	Hydrophillic Black Carbon (aged BC)	Sea Salt accumulatio n mode	Sea Salt Coarse mode	Dust from soil erosion
Density (g/cm ³)	1.77	1.47	1.3	1.8	1.8	2.2	2.2	2.5- 2.65
Modal radius (μm)	0.05	0.12	0.095	0.012	0.012	0.085	0.4	-
Sigma	2	1.3	1.5	2	2	1.5	1.8	-
Growth RH 90%	1.64	-	1.64	-	1.4	2.37	2.39	-
Refind species	AMSU	ORGC	SOAH	BCME	BCME	Accum.	Coarse	SINYUK
Real refind 550 nm	1.53	1.63	1.43	1.85	1.85	1.5	1.5	1.56
Im refind 550 nm	1e-7	0.021	0	0.71	0.71	1e-8	1e-8	0.0014

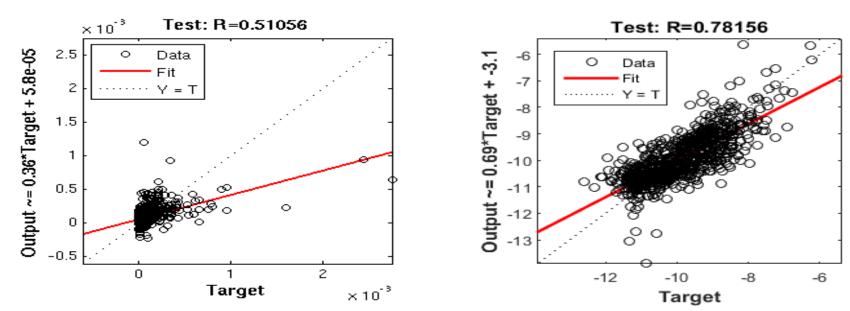
ARE THE SIMULATED AEROSOL SPECIES (ENOUGH) OPTICALLY DIFFERENT?




- The ratio of reflectances of sensitivity tests with that of the reference case display different and distinctive trends for the selected species.
- Dust is the dominant optical species in this test point. Its ratio with the reference case is near 1.
- Sulfate and sea salt have a ratio almost monotonically decreasing with wavelength. The slope of sulfate is usually steeper than sea salt.
- The ratio of black carbon is always below 1 (high absorbtion of radiation). The slope of the ratio with wavelength is very steep in the UV-VIS, then it is almost constant.
- The ratio of organic carbon increases with wavelength in the visible than monotonically decreases.
- These features are similar among selected test points, but change in magnitude (increasing with the aerosol load)
- This features varies in magnitude for different solar and viewing angles, but are conserved
- Higher surface albedo decreases the differences among cases

- 5 ANN were trained, one for each aerosol component
- INPUT (12 nodes): Solar zenith and azimuth angles, latitude, longitude, Aerosol Optical Depth at 550 nm, 7 most significant components of the spectral TOA reflectance
- HIDDEN LAYER: One with 40 nodes
- OUTPUT (1 node): One aerosol component among SIA, BC, OC, Sea Salt, Dust

RESULTS: SECONDARY INORGANICS RETRIEVAL


RESULTS: SIA, ORGANICS, DUST, SEA SALT

RESULTS: BLACK CARBON

BC (linear conc.)

- These preliminary results show the potential for the quantitavive retrieval of the aerosol composition from space
- Dust, sea salts and secondary inorganic fractions are retrieved by the Neural Network with a correlation coefficient in the test phase between 0.87 and 0.78
- Organic fraction is retrieved with a correlation of 0.64
- Black carbon is retrieved with a correaltion of 0.51, which increases to 0.78 when using log concentrations
- More work is needed: introduction of observational noise, much larger training dataset, application to a real case (undergoing ...)

REFERENCES

Curci, G. et al. (2015), Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective, Atmos. Environ., 115, 541-552, doi: 10.1016/j.atmosenv.2014.09.009

- Kim, J. et al. (2007), Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign, J. Geophys. Res., 112, D22S33
- Zhang, Q., et al. (2007), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801

EXTRA SLIDES

REFRACTIVE INDICES OF SIMULATED AEROSOL SPECIES

Inorganics Organic Carbon secondary AMSU ORGC AMNI SOAD SULF SOAH 2.5 2.5 BIOM SUSO 0 0 WASO WASO INSO Re part Re part 2 0***** 1.5 1.5 Sea Salt 10⁰ 10⁰ Accumulation ----- Coarse ты 10⁻¹ ш 10⁻² ты 10⁻¹ ш 10⁻² 17 x) = n00000 1.6 Be bart 1.5 10-3 10⁻³ 10-4 10 10⁰ 10⁰ 10⁻¹ 10¹ 10⁻¹ 10¹ Wavelength (µm) Wavelength (um) 1.4 Dust Soot 3.5 BCHI ADIENT 1.3 ----- SINYUK BCME 2.8 10 OPAC SOOT те 10⁻¹ 2.6 2.5 Ke bart 2.4 Bart 2.2 B 10⁻³ 10⁻⁴ 10 10⁰ 10¹ 102 Wavelength (µm) 1.5 1.8 1.6 10⁰ ^{0.8} لم الم 0.6 มา มี 10⁻² 10 10 0.4 10⁰ 10⁻¹ 10⁰ 10¹ 10² 10³ 10-1 10¹ Wavelength (µm) Wavelength (µm)